Análisis y control de sistemas discontinuos / Analysis and control of discontinuous systems

Clave: 09A5584
No. de horas: 72
Unidades de crédito:  8
Créditos SATCA:  No disponible
Tipo de asignatura: Optativa
Fecha de elaboración: 2014-10-20

Objetivo general:
Students will be able to synthesize and analize variable structure controllers and observers for uncertain nonlinear systems.             
Unit I.  Define basic concepts of variable structure systems.
Unit II:  Provide mathematical tools for understanding the solution of differential equations with discontinuous right-hand-side.
Unit III:  Provide the design basis of variable structure controllers for perturbed systems.
Unit IV:  Synthesis and design of second and high-order sliding mode controllers.
Unit V:  Define key strategies for designing discontinuous observers.
Unit VI:  Synthesis of sliding mode controllers for mechanical systems.

1.  Variable structure systems.
2.  Mathematical preliminaries.
3.  Variable structure control for perturbed systems.
4.  Second and high-order sliding modes.
5.  Design of sliding-mode observers.
6.  Applications.
[1]   V. Utkin, J. Guldner, and J. Shi Sliding Mode Control in Electromechanical Systems. Boca Raton: CRC Press, 1999.
[2]   V. Utkin, Sliding Modes in Control and Optimization. London: Springer-Verlag, 1992.
 [3]   Y. Shtessel, C. Edwards, L. Fridman, and A Levant. Sliding Mode Control and Observation. New York: Birkhauser, 2013,
[4]    Y. Orlov, Discontinuous Systems: Lyapunov Analysis, and Robust Synthesis under Uncertainty Conditions. London: Springer, 2009.
[5]   W. Perrugueti and J.P. Barbot. Sliding Mode Control in Engineering. New York: Marcel-Dekker,2002
[6]   C. Edwards and S.K. Spurgeon. Sliding Mode Control: Theory and applications. London: Taylor & Francis, 1998.
[7]   A. F. Filippov, Differential Equations with Discontinuous Right Hand Sides. London: Kluwer, 1988.
[8]   A. Baccioti and L. Rosier. Liapunov Functions and Stability in Control Theory. Berlin: Springer, 2005.
[9]   H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[10]  R.I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Nonsmooth Mechanical Systems. London : Springer, 2001 .